\(\int \frac {\cos ^4(c+d x) (A+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [191]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 243 \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {(107 A+112 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/64*(107*A+112*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d/a^(1/2)-(A+C)*arctan(1/2*a^(1/2)*tan(d*
x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)-1/64*(21*A+16*C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/
96*(43*A+48*C)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-1/24*A*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*sec(d*x+c)
)^(1/2)+1/4*A*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4172, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {(107 A+112 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{64 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a \sec (c+d x)+a}}+\frac {(43 A+48 C) \sin (c+d x) \cos (c+d x)}{96 d \sqrt {a \sec (c+d x)+a}}+\frac {A \sin (c+d x) \cos ^3(c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}-\frac {A \sin (c+d x) \cos ^2(c+d x)}{24 d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]^4*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((107*A + 112*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(64*Sqrt[a]*d) - (Sqrt[2]*(A + C)*Ar
cTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - ((21*A + 16*C)*Sin[c + d*x])/(6
4*d*Sqrt[a + a*Sec[c + d*x]]) + ((43*A + 48*C)*Cos[c + d*x]*Sin[c + d*x])/(96*d*Sqrt[a + a*Sec[c + d*x]]) - (A
*Cos[c + d*x]^2*Sin[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (A*Cos[c + d*x]^3*Sin[c + d*x])/(4*d*Sqrt[a +
a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4172

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\cos ^3(c+d x) \left (-\frac {a A}{2}+\frac {1}{2} a (7 A+8 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\cos ^2(c+d x) \left (\frac {1}{4} a^2 (43 A+48 C)-\frac {5}{4} a^2 A \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{12 a^2} \\ & = \frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\cos (c+d x) \left (-\frac {3}{8} a^3 (21 A+16 C)+\frac {3}{8} a^3 (43 A+48 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{24 a^3} \\ & = -\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {\frac {3}{16} a^4 (107 A+112 C)-\frac {3}{16} a^4 (21 A+16 C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{24 a^4} \\ & = -\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+(-A-C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx+\frac {(107 A+112 C) \int \sqrt {a+a \sec (c+d x)} \, dx}{128 a} \\ & = -\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {(2 (A+C)) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}-\frac {(107 A+112 C) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d} \\ & = \frac {(107 A+112 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 \sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {(21 A+16 C) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {(43 A+48 C) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}-\frac {A \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.66 \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left ((321 A+336 C) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )-192 \sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+\cos (c+d x) \left (-63 A-48 C+(86 A+96 C) \cos (c+d x)-8 A \cos ^2(c+d x)+48 A \cos ^3(c+d x)\right ) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{192 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[(Cos[c + d*x]^4*(A + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(((321*A + 336*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]] - 192*Sqrt[2]*(A + C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]
] + Cos[c + d*x]*(-63*A - 48*C + (86*A + 96*C)*Cos[c + d*x] - 8*A*Cos[c + d*x]^2 + 48*A*Cos[c + d*x]^3)*Sqrt[1
 - Sec[c + d*x]])*Tan[c + d*x])/(192*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(701\) vs. \(2(210)=420\).

Time = 0.75 (sec) , antiderivative size = 702, normalized size of antiderivative = 2.89

method result size
default \(\frac {\left (48 A \cos \left (d x +c \right )^{4} \sin \left (d x +c \right )-8 A \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )-192 A \sqrt {2}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-192 C \sqrt {2}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+86 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-192 A \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+321 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+96 C \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-192 C \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+336 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )-63 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+321 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )-48 C \cos \left (d x +c \right ) \sin \left (d x +c \right )+336 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{192 d a \left (\cos \left (d x +c \right )+1\right )}\) \(702\)

[In]

int(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/192/d/a*(48*A*cos(d*x+c)^4*sin(d*x+c)-8*A*cos(d*x+c)^3*sin(d*x+c)-192*A*2^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c
)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-192*C*
2^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*(-cos(d*x+c)/(co
s(d*x+c)+1))^(1/2)*cos(d*x+c)+86*A*cos(d*x+c)^2*sin(d*x+c)-192*A*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln
((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))+321*A*(-cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+96*C*cos(d*x+c
)^2*sin(d*x+c)-192*C*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d
*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))+336*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c
)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-63*A*cos(d*x+c)*sin(d*x+c)+321*A*(-cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-48*C*cos(d*x+c)*sin(d*x+c)+336
*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)))*(
a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 1.96 (sec) , antiderivative size = 558, normalized size of antiderivative = 2.30 \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {192 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 3 \, {\left ({\left (107 \, A + 112 \, C\right )} \cos \left (d x + c\right ) + 107 \, A + 112 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, A \cos \left (d x + c\right )^{4} - 8 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (43 \, A + 48 \, C\right )} \cos \left (d x + c\right )^{2} - 3 \, {\left (21 \, A + 16 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {3 \, {\left ({\left (107 \, A + 112 \, C\right )} \cos \left (d x + c\right ) + 107 \, A + 112 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, A \cos \left (d x + c\right )^{4} - 8 \, A \cos \left (d x + c\right )^{3} + 2 \, {\left (43 \, A + 48 \, C\right )} \cos \left (d x + c\right )^{2} - 3 \, {\left (21 \, A + 16 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {192 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{192 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/384*(192*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2
*cos(d*x + c) + 1)) - 3*((107*A + 112*C)*cos(d*x + c) + 107*A + 112*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sq
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) +
 1)) + 2*(48*A*cos(d*x + c)^4 - 8*A*cos(d*x + c)^3 + 2*(43*A + 48*C)*cos(d*x + c)^2 - 3*(21*A + 16*C)*cos(d*x
+ c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), -1/192*(3*((107*A + 112*
C)*cos(d*x + c) + 107*A + 112*C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*
sin(d*x + c))) - (48*A*cos(d*x + c)^4 - 8*A*cos(d*x + c)^3 + 2*(43*A + 48*C)*cos(d*x + c)^2 - 3*(21*A + 16*C)*
cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - 192*sqrt(2)*((A + C)*a*cos(d*x + c) + (A
+ C)*a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(
a*d*cos(d*x + c) + a*d)]

Sympy [F]

\[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos ^{4}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(cos(d*x+c)**4*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)**4/sqrt(a*(sec(c + d*x) + 1)), x)

Maxima [F]

\[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{4}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^4/sqrt(a*sec(d*x + c) + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1012 vs. \(2 (210) = 420\).

Time = 2.10 (sec) , antiderivative size = 1012, normalized size of antiderivative = 4.16 \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^4*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/384*(192*sqrt(2)*(A + C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(
-a)*sgn(cos(d*x + c))) + 3*(107*A + 112*C)*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*
c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(sqrt(-a)*sgn(cos(d*x + c))) - 3*(107*A + 112*C)*log(abs((sqrt(-a)*tan(1/2*
d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/(sqrt(-a)*sgn(cos(d*x + c))) + 4*s
qrt(2)*(1599*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^14*A*sqrt(-a) + 816*(sqrt(-
a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^14*C*sqrt(-a) - 18219*(sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*A*sqrt(-a)*a - 12528*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*
tan(1/2*d*x + 1/2*c)^2 + a))^12*C*sqrt(-a)*a + 91467*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/
2*c)^2 + a))^10*A*sqrt(-a)*a^2 + 64752*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^1
0*C*sqrt(-a)*a^2 - 177735*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*sqrt(-a)*a
^3 - 124848*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*C*sqrt(-a)*a^3 + 100413*(s
qrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*sqrt(-a)*a^4 + 70032*(sqrt(-a)*tan(1/2
*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*sqrt(-a)*a^4 - 26881*(sqrt(-a)*tan(1/2*d*x + 1/2*c) -
 sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*sqrt(-a)*a^5 - 19152*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/
2*d*x + 1/2*c)^2 + a))^4*C*sqrt(-a)*a^5 + 3321*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
 + a))^2*A*sqrt(-a)*a^6 + 2640*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt(
-a)*a^6 - 205*A*sqrt(-a)*a^7 - 144*C*sqrt(-a)*a^7)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/
2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^4*sgn(cos(
d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((cos(c + d*x)^4*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^4*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x)